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Abstract. We consider random patterns on theN -sphere which are uniformly distributed
with the exception of a single symmetry-breaking orientation, along which they are Gaussian
distributed. The unsupervised recognition of this orientation by different learning rules is
studied in the large-N limit using the replica method. The model is simple enough to be
analytically tractable and rich enough to exhibit most of the phenomena observed with other
pattern distributions. A learning algorithm based on the minimization of a cost function is
identified which reaches the upper theoretical limit imposed by the optimal (Bayes-) learning
scenario. An implementation of this algorithm is proposed and tested numerically.

1. Introduction

The main objective in unsupervised learning is the detection of structure in a given set
of data, typically a set ofp N -dimensional vectors{ξµ}pµ=1 [1–6]. This can only be
achieved provided a certain amount ofa priori knowledge about the form of the probability
distribution that generates the patternsξµ is available. In this paper we investigate a
‘Gaussian scenario’, in which this distribution has a Gaussian form. This simple case
allows for a fully analytical treatment, while it surprisingly retains many of the characteristic
features and phenomena observed for more complicated distributions [2, 3, 6]. More
precisely, we assume that there exists a single (unknown) directionB such that those
components of a patternξµ orthogonal toB are independent normal Gaussian random
variables, while for the componentλ = ξµ ·B/||B|| parallel toB the Gaussian distribution
has a non-zero mean and a modified dispersion:

P ∗(λ) ∝ e−λ2/2−V ∗(λ) (1)

V ∗(λ) = a λ2/2 − b λ (2)

where proportionality∝ accounts for an omitted normalization constant and the parameters
a and b are assumed to satisfya > −1 andb > 0. In other words, each data pointξµ

carries a single information-rich scalarλ, which, however, is buried in a large amount of
random signals. We assume to know the values ofa and b and our goal is to infer the
unknown symmetry-breaking orientationB from the set of patterns{ξµ}pµ=1.

The paper is organized as follows. In section 2, we briefly review the basic strategies
to infer a hypothesis forB from the patterns{ξµ}pµ=1 and their resulting performance based
on a replica calculation. The so-called Gibbs and Bayes learning algorithms are discussed
in detail in section 3, while learning based on the minimization of a specific (quadratic)
cost function is worked out in section 4. In particular, a cost function is identified, the
performance of which reaches the upper theoretical limit imposed by the optimal (Bayes-)
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learning scenario. A practical algorithm to minimize this cost function is discussed within
our conclusions in section 5.

2. General framework

A widely used strategy to select a hypothesisJ for B is to introduce a scalar cost function
E that describes how well a specific vectorJ incorporates the information of the training
set {ξµ}pµ=1. In the present problem, we note that each patternξµ has, as a result of the
central limit theorem, a length approaching

√
N for large N . It is therefore convenient

to normalize the length of the otherN -dimensional vectors, such asB and J , to be
equal to

√
N . Because the training examples are assumed to be sampled independently

of one another, it turns out that an additive cost function of the following form covers most
interesting learning scenarios [2–6]:

E(J) =
p∑

µ=1

V (ξµ · J/
√

N) (3)

under the side conditionJ2 = N and with a properly chosenad hocpotentialV (λ). Within
the context of our ‘Gaussian scenario’ (cf equation (2)) we will concentrate on the following
class of quadraticad hocpotentials:

V (λ) = c λ2/2 − dλ (4)

wherec andd are parameters. The adaline rule† is recovered forc = 1, maximal variance
learning (principal component analysis) [2, 3] forc = −2, d = 0, and the Hebb (or Hopfield)
rule for c = 0, d = 1 (see section 3.1 in [9] and section 4.5 in [8]).

In order to quantify the quality of a hypothesisJ constructed on the basis of the cost
function (3), (4) we consider the distribution of its overlapR = J ·B/N with the unknown
‘true’ B, assuming for the moment thatJ is selected from the Boltzmann-like ensemble
with cost functionE and ‘inverse temperature’β:

ρ(R) ∝
∫

dJ e−β E(J ) δ(J · B/N − R) δ(J2 − N) . (5)

The description in terms of such an ensemble also includes several other learning algorithms
to be discussed below. Assuming replica symmetry, a standard calculation [6] shows that
in the limit N → ∞ with α := p/N fixed, the distributionρ(R) is self-averaging with
respect to the pattern distribution and approachesδ(R − R(α)). The locationR(α) of the
δ-peak follows from the extremization‡ of

G(q, R) = ln x

2
+ β(1 − R2)

2x
− α ln(1 + cx)

2

− α β/2

1 + cx

[
c −

(
d2 + c2

β2

)
x − 2B d R + c(B2 − A) R2

]
(6)

where we introduced

x := β(1 − q) A := a/(1 + a) B := b/(1 + a) . (7)

† Unlike in the original adaline algorithm [7], in our case the minimization of the cost function (3) is performed
under the extra condition thatJ must be properly normalized, see also section 2.4 in [8] and sections 3.2, 3.3 in
[9].
‡ By ‘extremization’ we mean a minimization with respect toq ∈ [R2, 1] under the side condition 1+ cx > 0 for
any R ∈ [−1, 1], followed by a maximization with respect toR ∈ [−1, 1].
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Note thatA < 1 andB > 0 due toa > −1 andb > 0. As usual, the extremizingR = R(α)

is the typical overlap ofJ andB, whereas the extremizingq = q(α) represents the typical
self-overlap ofJ -vectors from two different replicas. The local stability condition [10] for
the replica-symmetric solution (6) takes the simple form [6]

1 > α

(
c x(α)

1 + c x(α)

)2

(8)

wherex(α) := β(1− q(α)). Note that the pattern distribution and the value ofd only enter
indirectly throughx(α).

Following the general discussion presented in [6], we briefly review the various learning
rules that can be obtained from (6). It is clear from (5) that the performanceR(α) of a
hypothesis vectorJ that minimizes the cost function (3), (4) follows by extremization of
(6) in the limit β → ∞. Further interesting ‘learning rules’ that can be studied by means
of (6) are found by observing that, given the patterns{ξµ}pµ=1, the a posteriori probability
for the unknownB to coincide with a hypothesisJ is given by†

P(J |{ξµ}pµ=1) ∝ exp

{
−

p∑
µ=1

V ∗(ξµ · J/
√

N)

}
δ(J2 − N) . (9)

By comparison of (9) with (3), (5) the performanceRM(α) of the most probablea posteriori
(or maximal likelihood) hypothesisJ follows again by extremization of (6) in the limit
β → ∞ provided we chooseV (λ) = V ∗(λ), i.e. c = a andd = b. Next we note that the
choiceβ = 1 andV (λ) = V ∗(λ) in (3), (5) means sampling at random a vectorJ according
to thea posterioriprobability (9). This strategy is known as Gibbs (or Boltzmann) learning
and the corresponding performanceRG(α) is again recovered by extremization of (6) with
c = a, d = b andβ = 1. In this case,B and the different replicas ofJ play an equivalent
role so that one findsq = R and one is left with a maximization ofG(q = R, R) with
respect toR ∈ [0, 1] in order to findRG(α). Finally, the performanceRB(α) of the so-
called Bayes rule, corresponding to the best hypothesis that possibly can be inferred from
the given patterns{ξµ}pµ=1, is related to the Gibbs overlapRG(α) through

RB(α) =
√

RG(α) (10)

according to a general argument given in [3]. Hence, this upper theoretical limitRB(α) for
the performance ofany learning rule can be determined within our general framework as
well.

3. Gibbs and Bayes learning

As explained in the previous section, the overlapRG(α) for Gibbs learning follows from
(6) by maximization overR ∈ [0, 1] with β = 1, V (λ) = V ∗(λ), andq = R. One finds the
following explicit result (cf appendix A):

RG(α) = 1 + α[B2(1 + A) − A2] − √
QG

2A[1 + α(B2 − A)]
(11)

QG := (
1 − α[B2(1 − A) + A2]

)2 + 4αB2(1 − A) . (12)

† This relation (9) is a straightforward consequence of the so-called Bayes rule applied to the conditional
distribution of the patterns{ξµ}pµ=1 given B with a uniform prior onB, see e.g. [3, 6].
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For asymptotically small and largeα this yields

RG(α) = α B2 + O(α2) (13)

RG(α) = 1 − 1

α

(1 + a)2

b2 + a2(1 + a)
+ O(α−2) . (14)

We also mention the following particular cases and limits:

RG(α) = 2(α) for a → −1 or b → ∞ (15)

RG(α) = α b2

1 + α b2
for a = 0 (16)

RG(α) = 2(α − α0)
α − α0

α − 1/A
α0 := 1/A2 for b = 0 (17)

RG(α) =


αB2

1 − α + αB2
for α 6 1

1 for α > 1
for a → ∞ b/a → B = constant.

(18)

In the latter case, all patterns lie on a cone with fixed overlapλ = B with the symmetry-
breaking orientationB. The Heaviside function is defined as2(x) = 1 for x > 0 and
= 0 for x 6 0. The local stability condition (8) turns out to be always satisfied with the
exception ofb = 0 andα = α0, where a marginally stable situation is encountered.

The overlapRB(α) for Bayes learning follows from (10), (11) and is shown for a few
representative values ofa and b in figure 1. It starts off like

√
α for small α, provided

there is a bias in the pattern distribution,b > 0. For b = 0 the phenomenon of ‘retarded
classification’ [3] is observed: there exists a threshold valueα0 (cf equation (17)), below
which the structure underlying the patterns{ξµ}pµ=1 cannot be recognized by the Bayes and

Figure 1. The overlapRB(α) for Bayes learning according to (10), (11) at four different
parameter valuesa and b. The full curve (a = b = 3) illustrates the ‘typical’ behaviour, the
broken curve (a = 3, b = 0) exemplifies retarded classification ending with a second-order
transition atα = α0 ' 1.78. The chain curve represents a case where all patterns lie on a
cone (a → ∞ with b/a = 1) leading to perfect learning forα > 1. When all patterns are
perpendicular toB (dotted line,a → ∞, b/a → 0) retarded classification goes over to perfect
learning atα = 1 through a first-order transition.
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thus by any learning rule,RB(α) = 0 for α 6 α0, see figure 1. The same phenomenon has
also been observed for more complicated non-uniform distributions, usingad hocpotentials
[2, 4], or the Gibbs and Bayes rules [3]. The closely related effect of ‘retarded generalization’
in supervised learning has been discussed in [11].

OnceRB(α) is non-zero it stays monotonically increasing, and typically approaches 1
like α−1 for largeα. Furthermore,RB(α) is monotonically increasing as a function ofb for
any fixed value ofa andα > 0. Thus, at least in the optimal case of Bayes learning, the
learnability of the symmetry-breaking orientation increases with the number of presented
patterns as well as with their bias. Forb = 0 one finds that∀α > α0 the overlapRB(α)

increases with increasing parametera when a > 0 and decreases with increasinga when
−1 < a < 0. In other words, without bias (b = 0) the Bayes rule learns the fastest for
a → −1 anda → ∞, namely asRB(α) = 2(α) and RB(α) = 2(α − 1), respectively,
and performs worse asa approaches 0 from both the negative and positive side, with the
obvious worst caseRB(α) ≡ 0 for uniformly distributed patterns (a = b = 0).

The resultRB(α) = 2(α), found for a → −1 or b → ∞, can be understood from the
fact that the typical overlaps of the patterns{ξµ}pµ=1 with the symmetry-breaking orientation
B become very large in these limits. It is therefore plausible thatB can be inferred from
a numberp = o(N) of patterns, see equation (15). The resultRB(α) = 2(α − 1) for
a → ∞, b/a → 0 follows from the fact that, in this limit, all patternsξµ lie exactly on the
big circle perpendicular to the unknownB. For p < N , they are linearly independent with
probability 1 and define a (N −p)-dimensional subspace of equally probable hypothesesJ .
It is not difficult to see that this impliesRB = 0 for p < N andRB = 1 for p > N . By
similar arguments one can understand the more general result (18).

4. Quadratic ad hocpotentials

We recall that the overlapR(α) corresponding to the minimization of the cost function (3),
(4) follows by lettingβ → ∞ in (6). Obviously, we can restrict ourselves tod > 0 since
d 7→ −d merely changes the sign ofR(α). We first reproduce the bare results, with the
identification of several subcases, and afterwards turn to a more detailed discussion.

4.1. Results

For c = 0 (andd > 0) the extremizing overlaps in (6) are readily found to be

q(α) = 2(α) (19)

R(α) =
√

α B2/(1 + α B2) . (20)

Note that the Hebb rule (d = 1) follows as a special case and that the value ofd is actually
irrelevant (apart from the trivial cased = 0).

For c 6= 0, the results do not depend onc andd separately, but only on their ratio

D := d/c (21)

and the sign ofc. One has to distinguish two cases, corresponding to whetherq = q(α) in
(6) stays below 1 or converges to 1 forβ → ∞. The details of the calculations are given
in appendix B. Forc > 0 andα < αc < 1, with

αc = 1 + D2 + A − B2 − √
Qc

2 [AD2 + A − B2]
(22)

Qc := [1 − D2 − A + B2]2 + 4D2(1 − A) (23)
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it is found thatq = q(α) converges to a value< 1 and one obtains

q(α) = R(α)
D

B

1 − α A

1 − α
(24)

R(α) = α
B D

1 + α(B2 − A)
. (25)

The fact thatq(α) < 1 belowαc can be understood as follows. Forc > 0 minimization of
the cost function (3), (4) is equivalent to that of

∑p

µ=1(J · ξµ/
√

N − d/c)2. For d = 0 and
p < N there is a whole set of properly normalizedJ ’s for which this sum takes its absolute
minimal value 0 and thereforeq(α) < 1 for α ∈ [0, 1[. Whend 6= 0 the size of this set is
expected to be smaller, and a solutionq(α) < 1 will appear in a smallerα-interval.

In the remaining cases, i.e.α > 0 when c < 0 or α > αc when c > 0, one finds
that q(α) → 1 for β → ∞, andR(α) follows as the unique solution of the fourth-order
equation:

α

(
A − B2 + B D

R

)2

= F(R)

1 − R2
0 6 R 6 R0 (26)

F(R) := 1 − A R2 + (D − B R)2 (27)

R0 :=


B D

B2 − A
if 0 < B D

B2−A
< 1

1 otherwise .
(28)

4.2. Discussion

We now turn to the discussion of the results from the previous subsection. For illustrations
see figure 2. We first note thatR(α) andq(α) are non-decreasing functions ofα andR(α)

is even strictly increasing apart from specific cases ofα-domains with a constantR(α).
Further,q(α) andR(α) depend smoothly onα with the exception ofα = αc whenc > 0,
where they are continuous but non-differentiable (see figures 2(a), (b), and ofα = 0 when
c 6 0, whereq(α) jumps from 0 to 1 (see figures 2(c), (d). A surprising phenomenon may
occur for c > 0 in the domainα < αc which, to the best of our knowledge, is observed
here for the first time:for B > D and sufficiently smallα, equation (24) implies that the
overlapR(α) exceeds the self-overlapq(α)! (However,q(α) > R(α)2 is still fulfilled.) An
example can be seen in figure 2(b). This somewhat counterintuitive phenomenon does not
seem to call for far reaching physical consequences. Rather it appears to be yet another
curiosity that may occur in a space of high dimensionalityN . Though it has never been
noticed previously we expect it to also occur beyond the ‘Gaussian scenario’ considered
here.

For smallα the overlapR(α) starts off proportional toα when c > 0, cf (25), and
proportional to

√
α whenc 6 0. The explicit behaviour forc < 0 is obtained from (26):

R(α) =
√

α
B2D2

1 + D2
+ O(α) . (29)

The coefficients in these asymptotic expressions for smallα are non-zero only forB D 6= 0
(B d 6= 0 if c = 0). For B D = 0, including symmetric pattern distributions (b = 0) [3]
or symmetric potentials (d = 0), but also in the limitsa → ∞ or c → ±∞, retarded
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Figure 2. The overlapR(α) (full) and the self-overlapq(α) (broken) for unsupervised learning
of Gaussian patterns (1), (2) by minimization of the quadratic cost function (3), (4). (a) Typical
example withc > 0 (a = b = 3, c = d = 1) showing a characteristic singularity of the overlaps
at αc. (b) The same but withR(α) > q(α) for small α (a = b = 3, c = 2, d = 1). (c) Typical
example withc < 0 (a = b = 3, c = −1, d = 3) exhibiting the characteristic

√
α-behaviour of

R(α) for small α and the trivial self-overlapq(α) = 2(α). (d) The same but withR(α) < 1
for α → ∞ (a = b = 3, c = −1, d = 0.2). (e) An example for retarded classification due to a
symmetric pattern distribution (a = 3, b = 0, c = d = 1). (f ) Retarded classification induced
by a symmetricad hocpotential (a = 3, b = 1, c = 1, d = 0).
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Figure 2. (Continued.)

classification occurs (see figures 2(e), (f )). One then finds for arbitraryα that

R(α) = 2(c[A − B2]) 2(α − α0)

√
α − α0

α − (A − B2)−1
(30)

α0 := [1 + D2]/[A − B2]2 (31)
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if c 6= 0 andR(α) ≡ 0 if c = 0. In particular, forc [A − B2] 6 0 nothing at all can be
learned if eitherB → 0 or D → 0. For c < 0, d = 0 (maximal variance learning) and
c > 0, d = 0 (corresponding to ‘minimal variance learning’) it is, in fact, rather obvious
that the symmetry-breaking orientationB will be orthogonal to the direction with maximal
or minimal variance of the patterns{ξµ}pµ=1 if A − B2 is positive or negative, respectively,
since the variance of the examples in theB-direction is just 1− [A − B2] and 1 in any
direction orthogonal toB. A similar phenomenon has been observed in [2]. Note also
that the retardation thresholdα0, in general, depends on the specific learning rule under
consideration, but is obviously bounded from below by the one corresponding to Bayes
learning (17). Finally, forB D = 0 one hasq(α) = 2(α) for c < 0, while for c > 0
the self-overlap exhibits the non-trivial behaviourq(α) = α D2/(1 − α) in the domain
α < αc = 1/(1+D2), see figures 2(e), (f ). In agreement with the general conjecture made
in [6], the retardation thresholdα0 is always larger or equal toαc. The spin-glass-type
phase withq(α) > 0 but R(α) = 0 has been termed ‘phase of confusion’ in [3] since the
hypothesesJ become oriented but not correlated with the ‘true’B.

The large-α asymptotics for the Hebb rule (c = 0) and forB D = 0 is obvious from
(20) and (30), respectively, whereas in any other case one finds that

R(α) =



R0 −
√

1

α

F(R0) R4
0

(1 − R2
0) B2 D2

if 0 < R0 < 1

1 − 3

√
1

α

F(1)

2B2 D2
if BD = B2 − A

1 − 1

α

F(1)

2(A − B2 + BD)2
otherwise .

(32)

In particular, for 0< R0 < 1 the symmetry-breaking directionB can never be perfectly
inferred even from infinitely many examples, cf figure 2(d).

4.3. Saturation of the Bayes limit

From equations (10), (16) and (20) one readily sees that the overlapR(α) corresponding to
the minimization of the cost function (3), (4) coincides with the Bayes resultRB(α) for any
pattern distribution (1) witha = 0 provided one choosesc = 0 (Hebb rule). As pointed out
in section 4.1, the particular value ofd > 0 does not matter and one can take, for instance,
d = b. In other words, fora = 0 the overlapRM(α) for the maximuma posteriori learning
rule (minimization of the cost function (3) withV (λ) = V ∗(λ), cf section 2) reaches the
upper theoretical limit imposed by the Bayes algorithm. The same resultRM(α) = RB(α)

is recovered also for symmetric pattern distributionsb = 0 by comparison of (17) and (30),
while for a andb both non-vanishing one can show thatRM(α) < RB(α) (except forα = 0
and α → ∞). In the latter case one might wonder whether one still can find a potential
V (λ) different fromV ∗(λ) that reaches the Bayes limit. In the appendix C it is proved that
this is indeed possible, namely by choosing a quadratic potential (4) with parameter values
c andd that satisfy

c

d
= a

b
RB(α) (33)

where b > 0 and d > 0 is tacitly assumed as usual. For examples see figure 3. The
mismatch between this optimal choice of the potentialV (λ) and the maximala posteriori
learning ruleV (λ) = V ∗(λ) can be understood [3] by the fact that, given a set of patterns
{ξµ}pµ=1, the corresponding most probable hypothesisJ from (9) may be quite different
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Figure 3. The overlapRB(α) for Bayes learning (full curve) according to (10) and (11) at
parameter valuesa = b = 3 in (a) anda → ∞ with b/a = 1 fixed in (b). The broken curves
are the overlapsR(α) corresponding to minimizing the quadratic cost function (3), (4) with
parameter valuesc = 0, d = 1 (Hebb rule, touchingRB(α) for small α), 2c = d = 1 and
c = d = 1 (maximal a posteriori probability rule, touchingRB(α) for large α). The dotted
curves represent examples (c = 4, d = 1 andc = −1, d = 1) which never touchRB(α) for
finite α.

from a suitably defined ‘typical’ one. Exceptions area = 0 or b = 0, as already seen, as
well as asymptotically largeα (according to (33) withRB(∞) = 1) or a → ∞ with b/a

fixed andα > 1, see equation (18) and figure 3(b). In the latter case, where all patterns
lie on a cone aboutB, the choiced/c = b/a leads to a perfect guess forB after p = N

patterns have been seen, while any other choice ofd/c yields R(α) < 1 for all α < ∞.
In conclusion, we see that a potential saturating the Bayes limit can always be found but

that this optimal choice typically depends onα and the details of the pattern distribution.
Exceptions are asymptotically smallα for which the Hebb rule is always optimal. We
finally note that according to (33), for given non-vanishing values ofa andb the function
RB(α) is recovered as the envelope of all the learning curvesR(α) generated by different
choices ofc and d. However, only those with 06 d 6 b c/a and c of the same sign as
a actually touchRB(α), see figure 3. Although fora > 0 all theseR(α) curves start off
proportional toα, the envelopeRB(α) increases like

√
α. These features are reminiscent of

those reported in [12].
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5. Outlook

We studied unsupervised learning from examples governed by a distribution (1) with a
single symmetry-breaking orientationB by means of replica methods. Our results include
the performance of hypothesesJ for this unknown directionB based on Bayes, Gibbs and
maximal a posteriori learning algorithms as well as the minimization of a cost function
(3) with quadraticad hoc potentials (4). By restricting ourselves to Gaussian pattern
distributions (2), a complete analytical solution of the problem was possible. In particular,
we were able to determine the relevantglobal extremum of the replica-symmetric free
energy (6) and to verify the local stability condition (8) analytically in all cases.

In spite of its simplicity, our ‘Gaussian scenario’ exhibits most of the features observed
previously for more complicated pattern distributions as well as various novel phenomena.
We only mention here the effect of retarded classification connected with a first- or second-
order transition in the overlapR(α), the saturation of the Bayes limit byad hocpotentials,
the possibility of perfect learning forα < ∞ and of imperfect learning even in the limit
α → ∞. In fact, the general results obtained in [13] indicate that our ‘Gaussian scenario’ is
indeed representative in practically all respects, at least for smooth pattern distributions (1).
For instance, one can always find anad hocpotential saturating the Bayes limit. Typically,
it depends onα, coinciding with the Hebb rule for asymptotically smallα and with the
most probablea posteriori learning strategy for asymptotically largeα. Also our finding
that a symmetric pattern distribution or a symmetric potential imply retarded classification
carries over unchanged to the general case.

The saturation of the Bayes limit by usingad hocpotentials is not only of principal but
also of practical interest since the implementation of the Bayes algorithm itself is numerically
extremely expensive. Therefore some remarks regarding the numerical minimization of the
quadratic cost function (3), (4) with side conditionJ2 = N may be in place. For a linear
potential (c = 0) this minimization becomes equivalent to Hebbian learning and is thus
trivial to implement. The cased = 0 andc < 0 corresponds to maximal variance learning
and can be efficiently realized, e.g. by Oja’s rule [14]. Ford = 0 andc > 0 one can show
that the cost function has a unique minimum on theN -sphere (at least beyond the retardation
thresholdα0, cf section 4.2, and apart from the trivial symmetryJ 7→ −J ) which thus can
be found by gradient descent or similar more efficient procedures [14]. If bothc andd are
non-zero we cannot exclude local minima of the cost function and algorithms which might
get stuck in one of them should not be used. In order to reach the Bayes limit we propose
the following novel learning algorithm: one starts with Hebbian learning of a few examples.
Then J is updated sequentially in two steps by adding one or a few new examples each
time: in a first step the cost function is minimized with respect to the slightly enlarged set
of examples without changing the potentialV (λ). Since, as we demonstrated in this paper,
the assumption of replica symmetry seems to be valid, the cavity concepts (see [9] and
further references therein) strongly suggest that the minimizingJ changes little and can be
updated, e.g. by gradient descent. In a second step, the potential is adapted to the slightly
increasedα-value according to (33). Again, one expects that in this way the minimizingJ
changes only a little and can be updated by standard methods. We verified this procedure
by extensive numerical simulations as discussed in more detail in appendix D. From the
results shown in figure 4 we conclude that our algorithm indeed approaches the Bayes limit
for asymptotically largeN . We finally mention that the most probablea posteriori learning
rule for largeα, where it reaches the Bayes limit, can also be implemented very efficiently
by a suitably tailored on-line algorithm [13].

Throughout our investigation we assumed to knowV ∗(λ) from (2) and it turned out
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Figure 4. The numerical overlapR(α) (circles) obtained by the iterative gradient descent-type
algorithm on the optimalad hoc potential proposed in section 5 (see also appendix D) for
N = 100,a = b = 3. The full curve is the theoretical Bayes limitRB(α) from (10), (11). The
inset exemplifies the extrapolationN → ∞ (from data forN = 25, 50, 75, 100) forα = 0.5.
The theoretical Bayes limit is indicated by the arrow (RB(α = 0.5) = 0.524).

that this knowledge is crucial to find a good hypothesisJ for the unknown ‘true’B. We
will show elsewhere how an unknownV ∗(λ) can be determinedexactly from the same
training set{ξµ}pµ=1 in the thermodynamic limitN → ∞ with α = p/N > 0 fixed. This
underscores the relevance of the present results in a more general context.
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Appendix A. Derivation of (11)

One can conclude from (6) that

dG(q = R, R)

dR
= α

2

[
B2 + A2 R

1 − A R

]
− 1

2

R

1 − R
. (A1)

Since this derivative (A1) is smooth for 0< R < 1, non-negative forR → 0 and approaches
−∞ for R → 1, we can focus on the determination of its zeros in the interval [0, 1] in
order to find the maximizingR = RG(α). The unique such zero is given by (11). This
solution is also consistent with the tacit restriction to 1+ cx > 0 in (6) (see also the second
footnote in section 2) due tocx = a(1 − q) > −1.



A Gaussian scenario for unsupervised learning 3533

Appendix B. Derivation of (22)–(26)

By closer inspection one can see that an extremum of (6) as specified in the second footnote
of section 2 exists, is generically unique and satisfies∂G(q, R)/∂q = 0, ∂G(q, R)/∂R = 0
for any fixed 0< β < ∞.

We now consider separately the cases where the extremizingq = q(α) in (6) stays
below 1 or converges to 1 forβ → ∞. In the former caseq(α) < 1 we can restrict
ourselves toc > 0 sincec < 0 is incompatible with the side condition 1+ cx > 0. Then,
equation (6) can be rewritten (up to an irrelevant additive constant) in the form

G(q, R) = 1 − α

2
ln(1 − q) + 1 − R2 − α F(R)

2(1 − q)
(B1)

whereF(R) is defined in (27). From the extremization condition∂G(q, R)/∂R = 0 one
recovers (25), while∂G(q, R)/∂q = 0 yields (24). The side condition 1+cx > 0 is trivially
fulfilled, whereas both the minimization condition with respect toq, ∂2G(q, R)/∂q2 > 0,
and the stability condition (8) are fulfilled if and only ifα < 1. Settingq(α) = 1 in (24)
and eliminatingR(α) by means of (25) one obtains a quadratic equation forα with the
unique solution (22) in the admitted domain 06 α < 1.

Next we address the case thatq(α) → 1 for β → ∞. Since the minima of the cost
function (3), (4) are of quadratic order,x = β (1 − q) is the sensitive quantity in this limit
[9] and the extremization ofG(q, R) from (6) becomes equivalent to the extremization of

G̃(x, R) = 1 − R2

2x
− α

2

cF (R)

1 + c x
. (B2)

We recall that we have to minimizẽG(x, R) with respect tox ∈ [0, ∞) and then to maximize
with respect toR ∈ [−1, 1]. Further, let us restrict ourselves for the moment toc > 0. For
any fixedR ∈ [−1, 1] the corresponding minimizingx = x(R) is then readily obtained:

x(R) =
√

1 − R2/[ch(R)] (B3)

h(R) :=
√

α F(R) −
√

1 − R2 (B4)

and we are left with the maximization of

G̃(x(R), R) = −c h(R)2/2 (B5)

providedh(R) > 0 for all R ∈ [−1, 1]. In the opposite case,h(R) 6 0 for at least one
R ∈ [−1, 1], our initial assumption that the extremizingx = x(α) is finite breaks down,
indicating that actuallyq(α) stays below 1 forβ → ∞. SinceA < 1 it follows thatF(R)

from (27) is positive for−1 6 R 6 1. Consequently, there must exist a criticalα value
α̃c above which the conditionh(R) > 0 for all R ∈ [−1, 1] is satisfied and below which it
is violated. As one expects, it will turn out that thisα̃c agrees withαc from (22). In the
following we will determine the valueR = R(α) that maximizesG̃(x(R), R) from (B5)
and thus minimizesh(R) from (B4) providedα > α̃c. We thus know that with decreasing
α, h(R(α)) vanishes for the first time atα = α̃c. Since additionallyh(R(α)) < 0 for all
α < α̃c, the value ofα̃c is uniquely fixed through

h(R(α̃c)) = 0 . (B6)

Exploiting the fact thath(R) > 0 for α > αc we can infer that the side condition 1+cx > 0
is always fulfilled byx(R) from (B3).

We now turn to the minimization ofh(R) from (B4). One readily sees that the minimum
R = R(α) cannot be atR = 1 nor in the domain−1 6 R 6 0 due to the term

√
1 − R2 in
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(B4) andB > 0, D > 0 in (27), respectively (for simplicity, the casesB = 0 andD = 0 are
treated here as limits of small positiveB andD, see also [6]). We can thus concentrate on
solutions ofh′(R) = 0 in the region 0< R < 1. Differentiating (B4), this implies thatR(α)

must be a solution of (26) (in particular, 06 R(α) 6 R0 must be satisfied). By means of a
straightforward but somewhat tedious discussion of this fourth-order equation (26) one can
show that a solution exists and is unique in the prescribed interval [0, R0] for any α. This
unique solution of (26) can thus be identified withR(α) providedα is above the critical
valueα̃c. At this critical value,R = R(α̃c) satisfies both (B6) and (26) and after eliminating
R one recovers that̃αc indeed coincides withαc from (22).

For c < 0 one can show by a similar line of reasoning thatq(α) = 1 andR(α) following
from (26) is a solution of the extremization problem plus side condition 1+ cx > 0, but
now for arbitraryα > 0. By closer inspection one finally finds that these solutions with
q(α) → 1 for β → ∞ for both c > 0 andc < 0 satisfy the stability condition (8).

In conclusion, we identified for all possible parameter- andα-values the relevant global
solution of the extremization problem (6) plus side condition 1+ cx > 0 and we verified
the stability condition (8) in all cases.

Appendix C. Derivation of (33)

We want to show that for given values ofa, b, and α we recoverR(α) = RB(α) if we
choosec and d according to (33). To this end it is sufficient to verify that withc and d

from (33) andR = RB(α) equation (26) is solved (due to the uniqueness of such a solution
found in appendix B) and, in the case thata > 0, additionallyh(R), defined in (B4), is
non-negative forR = RB(α), guaranteeing thatα > αc. Introducing (33) andR = RB(α)

into the definition (27) one obtains

A F(R) = (1 − A R2) h̃(R) (C1)

h̃(R) := A − B2 + BD/R . (C2)

Exploiting (C1) and the fact that (A1) is zero atRG(α) = RB(α)2 one finds thatR = RB(α)

satisfiesα h̃(R)2(1 − R2) = F(R) and that

α h̃(R) = 1 − A R2

A(1 − R2)

{
> 1 for a > 0

< 0 for a < 0 .
(C3)

From equations (C3), (C2) and (28) one can infer thatR < R0. SinceR > 0 is trivially
true for our choiceR = RB(α) the verification of (26) is completed. We are left to prove
h(R) > 0 in the case thata > 0. This is readily achieved by introducing (26) into the
definition (B4) and then making use of the inequality (C3).

Appendix D. Simulations

To verify whether the Bayes limit can indeed be reached by means of the algorithm proposed
in section 5 we performed extensive numerical simulations. Patterns were generated
according to the distribution (1), (2) by drawing the first component from a Gaussian
distribution with mean valuem = b/(1 + a) and standard deviationσ 2 = 1/(1 + a), while
the remainingN − 1 components were taken to be normally distributed random variables.
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Since for asymptotically smallα the Hebb perceptron reaches the Bayes limit (cf the
end of section 4.3) we used the Hebb rule as a starting point for the simulations:

J = 1

p

αsp∑
µ=1

ξµ (D1)

with αs ≈ 0.05. The additionalp − αs N patterns were added one by one to the data set.
At each step, the correspondingJ -vector was updated by minimization of the cost function
E(J):

E(J) =
p∑

µ=1

V (ξµ · J/
√

N) + γ (J2 − N)2 (D2)

where the potentialV (λ) is fixed through (4), (10), (11), (33) and the last term is added
to ensure proper normalization ofJ (γ being typically equal to 10.0). Minimization with
respect to this cost function was performed by means of the Fletcher–Reeves–Polak–Ribiere
algorithm which is essentially a conjugate gradient-descent method. For each value ofα,
we then calculated the overlap of the generated hypothesisJ with the ‘true’ preferential
directionB. The resulting curve forN = 100 is shown in figure 4. The overlap has been
averaged over 400 independent random sets of patterns. The small deviations from the
theoretical Bayes limit (less than 2% forα > 0.2) can be attributed to finite-size effects as
is illustrated in the inset of figure 4.
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