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Abstract. We consider random patterns on thésphere which are uniformly distributed
with the exception of a single symmetry-breaking orientation, along which they are Gaussian
distributed. The unsupervised recognition of this orientation by different learning rules is
studied in the largev limit using the replica method. The model is simple enough to be
analytically tractable and rich enough to exhibit most of the phenomena observed with other
pattern distributions. A learning algorithm based on the minimization of a cost function is
identified which reaches the upper theoretical limit imposed by the optimal (Bayes-) learning
scenario. An implementation of this algorithm is proposed and tested numerically.

1. Introduction

The main objective in unsupervised learning is the detection of structure in a given set
of data, typically a set ofp N-dimensional vectors{g"}z=1 [1-6]. This can only be
achieved provided a certain amountaopriori knowledge about the form of the probability
distribution that generates the patterffs is available. In this paper we investigate a
‘Gaussian scenario’, in which this distribution has a Gaussian form. This simple case
allows for a fully analytical treatment, while it surprisingly retains many of the characteristic
features and phenomena observed for more complicated distributions [2, 3, 6]. More
precisely, we assume that there exists a single (unknown) dire@icsuch that those
components of a patter&” orthogonal toB are independent normal Gaussian random
variables, while for the component= ¢ - B/|| B|| parallel toB the Gaussian distribution

has a non-zero mean and a modified dispersion:

P*(A) ox e¥/2V %) (1)
VA =ar?/2—ba 2)

where proportionalityx accounts for an omitted normalization constant and the parameters
a andb are assumed to satisty > —1 andb > 0. In other words, each data poigt
carries a single information-rich scalar which, however, is buried in a large amount of
random signals. We assume to know the values @ind b and our goal is to infer the
unknown symmetry-breaking orientatidd from the set of patternﬁ"}l’jzl.

The paper is organized as follows. In section 2, we briefly review the basic strategies
to infer a hypothesis foB from the pattern$£“}5:1 and their resulting performance based
on a replica calculation. The so-called Gibbs and Bayes learning algorithms are discussed
in detail in section 3, while learning based on the minimization of a specific (quadratic)
cost function is worked out in section 4. In particular, a cost function is identified, the
performance of which reaches the upper theoretical limit imposed by the optimal (Bayes-)
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learning scenario. A practical algorithm to minimize this cost function is discussed within
our conclusions in section 5.

2. General framework

A widely used strategy to select a hypothegigor B is to introduce a scalar cost function

E that describes how well a specific vectérincorporates the information of the training

set {5“}Z=1. In the present problem, we note that each patfgrras, as a result of the
central limit theorem, a length approachirgN for large N. It is therefore convenient

to normalize the length of the othey-dimensional vectors, such a8 and J, to be

equal to/N. Because the training examples are assumed to be sampled independently
of one another, it turns out that an additive cost function of the following form covers most
interesting learning scenarios [2—6]:

P
E(J)=) V(" -J/VN) 3)
n=1

under the side conditiod? = N and with a properly chosead hocpotential V (1). Within
the context of our ‘Gaussian scenario’ (cf equation (2)) we will concentrate on the following
class of quadratiad hocpotentials:

V(L) =cA%/2 —dx 4)

wherec andd are parameters. The adaline rule recovered for = 1, maximal variance
learning (principal component analysis) [2, 3] foe= —2,d = 0, and the Hebb (or Hopfield)
rule forc =0, d = 1 (see section 3.1 in [9] and section 4.5 in [8]).

In order to quantify the quality of a hypotheskconstructed on the basis of the cost
function (3), (4) we consider the distribution of its overlBp= J - B/N with the unknown
‘true’ B, assuming for the moment thakt is selected from the Boltzmann-like ensemble
with cost functionE and ‘inverse temperatures:

o(R) o</dJe*ﬁE(JW(J-B/N—R)a(JZ—N). (5)

The description in terms of such an ensemble also includes several other learning algorithms
to be discussed below. Assuming replica symmetry, a standard calculation [6] shows that
in the limit N — oo with « := p/N fixed, the distributionp(R) is self-averaging with
respect to the pattern distribution and approachiés— R(«)). The locationR(«) of the

5-peak follows from the extremizatigrof

|nix . B(1— R? B aln(l+ cx)

Glg. R) = 2x 2
ap)/2 , ) )
i ex |:c—<d +/32>x—ZBdR+C(B —A)Ri| (6)
where we introduced
x:=B1-¢q) A:=a/(1+a) B:=b/(1+a). )

1 Unlike in the original adaline algorithm [7], in our case the minimization of the cost function (3) is performed
under the extra condition thak must be properly normalized, see also section 2.4 in [8] and sections 3.2, 3.3 in
[9].

1 By ‘extremization’ we mean a minimization with respectgt@ [R?, 1] under the side condition&cx > 0 for

any R € [-1, 1], followed by a maximization with respect ® € [—1, 1].
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Note thatA < 1 andB > 0 due toa > —1 andb > 0. As usual, the extremizing§ = R(a)

is the typical overlap off and B, whereas the extremizing= ¢ («) represents the typical
self-overlap ofJ-vectors from two different replicas. The local stability condition [10] for
the replica-symmetric solution (6) takes the simple form [6]

1 ( cx(a) )2 ®)
- 1+ cx(a)

wherex(a) ;= B(1—¢q(x)). Note that the pattern distribution and the valuelainly enter
indirectly throughx («).

Following the general discussion presented in [6], we briefly review the various learning
rules that can be obtained from (6). It is clear from (5) that the perform&iae of a
hypothesis vectod that minimizes the cost function (3), (4) follows by extremization of
(6) in the limit 8 — oo. Further interesting ‘learning rules’ that can be studied by means
of (6) are found by observing that, given the pattef¢s}”_,, the a posteriori probability

=11
for the unknownB to coincide with a hypothesid is giv%n byt

)4
PG wexp| = SV TV 57 - ), ©)

u=1

By comparison of (9) with (3), (5) the performan®g () of the most probabla posteriori

(or maximal likelihood) hypothesid follows again by extremization of (6) in the limit

B — oo provided we choos& (1) = V*(A), i.e.c = a andd = b. Next we note that the
choiceg =1 andV (x) = V*() in (3), (5) means sampling at random a vecloaccording

to thea posterioriprobability (9). This strategy is known as Gibbs (or Boltzmann) learning
and the corresponding performanBg(«) is again recovered by extremization of (6) with
c=a,d=>bandp = 1. In this case B and the different replicas of play an equivalent

role so that one findg = R and one is left with a maximization af(¢ = R, R) with
respect toR € [0, 1] in order to findRg(). Finally, the performances(«) of the so-

called Bayes rule, corresponding to the best hypothesis that possibly can be inferred from

the given patterngc” ﬁ=1' is related to the Gibbs overlaRs(«) through

Re(a) = v/ Rg(a) (10)

according to a general argument given in [3]. Hence, this upper theoreticalRjsit) for
the performance oény learning rule can be determined within our general framework as
well.

3. Gibbs and Bayes learning

As explained in the previous section, the overlgg(x) for Gibbs learning follows from

(6) by maximization overR € [0, 1] with 8 =1, V(A) = V*(1), andg = R. One finds the

following explicit result (cf appendix A):

1+ a[B?(1+ A) — A%] — \/0c
2A[1 + a(B? - A)]

0c = (1— a[B2(1— A) + A2])* + 4aB?(1— A). (12)

Ro(a) = (11)

1 This relation (9) is a straightforward consequence of the so-called Bayes rule applied to the conditional
distribution of the pattern{sg“}zzl given B with a uniform prior onB, see e.qg. [3, 6].
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For asymptotically small and large this yields

Ro(a) = a B? + O(a?) (13)
1 (+a? i

We also mention the following particular cases and limits:

Re(a) = O(a) for a— -1 or b— o0 (15)
Ro(@) ab? for 0 (16)
o)) = —— a =
G 1+ ab?
Ro(@) = O —ag) =2 4p:=1/A% for b=0 17)
a—1/A
aB?

— fi <1
Re(@)=1 1—a +aB? or« for a - oo b/a — B = constant

1 fora > 1

(18)

In the latter case, all patterns lie on a cone with fixed ovellap B with the symmetry-
breaking orientationB. The Heaviside function is defined &(x) = 1 for x > 0 and

= 0 for x < 0. The local stability condition (8) turns out to be always satisfied with the
exception ofb = 0 anda = «g, where a marginally stable situation is encountered.

The overlapRg(x) for Bayes learning follows from (10), (11) and is shown for a few
representative values af and b in figure 1. It starts off like,/a for small o, provided
there is a bias in the pattern distributian> 0. Forb = 0 the phenomenon of ‘retarded
classification’ [3] is observed: there exists a threshold valyécf equation (17)), below
which the structure underlying the patter{rgg}fj:l cannot be recognized by the Bayes and

Figure 1. The overlapRg(«) for Bayes learning according to (10), (11) at four different
parameter values andb. The full curve ¢ = b = 3) illustrates the ‘typical’ behaviour, the
broken curve 4 = 3, b = 0) exemplifies retarded classification ending with a second-order
transition ate = ap >~ 1.78. The chain curve represents a case where all patterns lie on a
cone ¢ — oo with b/a = 1) leading to perfect learning fazx > 1. When all patterns are
perpendicular taB (dotted line,a — oo, b/a — 0) retarded classification goes over to perfect
learning ate = 1 through a first-order transition.
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thus by any learning ruleRg(e) = 0 for o < g, see figure 1. The same phenomenon has
also been observed for more complicated non-uniform distributions, asiigcpotentials
[2, 4], or the Gibbs and Bayes rules [3]. The closely related effect of ‘retarded generalization’
in supervised learning has been discussed in [11].

Once Rg () is non-zero it stays monotonically increasing, and typically approaches 1
like o~ for largea. FurthermoreRg () is monotonically increasing as a function iofor
any fixed value otz andae > 0. Thus, at least in the optimal case of Bayes learning, the
learnability of the symmetry-breaking orientation increases with the number of presented
patterns as well as with their bias. Fbr= 0 one finds tha¥a > o the overlapRg(«)
increases with increasing parametewhena > 0 and decreases with increasingvhen
—1 < a < 0. In other words, without biash(= 0) the Bayes rule learns the fastest for
a - —1 anda — oo, namely asRg(e) = O(x) and Rg() = O(x — 1), respectively,
and performs worse as approaches 0 from both the negative and positive side, with the
obvious worst cas®g(«) = 0 for uniformly distributed patternsi(= b = 0).

The resultRg () = O(«), found fora — —1 or b — oo, can be understood from the
fact that the typical overlaps of the pattel{l&'g}ﬁ:l with the symmetry-breaking orientation
B become very large in these limits. It is therefore plausible fBatan be inferred from
a numberp = o(N) of patterns, see equation (15). The resRf(e) = O(x — 1) for
a — 00, b/a — 0 follows from the fact that, in this limit, all patter&’ lie exactly on the
big circle perpendicular to the unknowB. For p < N, they are linearly independent with
probability 1 and define a\ — p)-dimensional subspace of equally probable hypothdses
It is not difficult to see that this implie®g = 0 for p < N andRg = 1 for p > N. By
similar arguments one can understand the more general result (18).

4. Quadratic ad hocpotentials

We recall that the overla@ («) corresponding to the minimization of the cost function (3),
(4) follows by letting — oo in (6). Obviously, we can restrict ourselvesda> 0 since
d — —d merely changes the sign @& («x). We first reproduce the bare results, with the
identification of several subcases, and afterwards turn to a more detailed discussion.

4.1. Results

For ¢ = 0 (andd > 0) the extremizing overlaps in (6) are readily found to be
q(@) = O(a) (19)
R(a) =+a B2/(1+ o B?). (20)
Note that the Hebb ruled(= 1) follows as a special case and that the valué & actually
irrelevant (apart from the trivial casé= 0).
For ¢ # 0, the results do not depend erandd separately, but only on their ratio
D:=d/c (21)

and the sign of. One has to distinguish two cases, corresponding to whetheg («) in
(6) stays below 1 or converges to 1 f8r— oco. The details of the calculations are given
in appendix B. For > 0 ande < o, < 1, with

_1+D*+A-B*—- /0.
%= T [ADZ+ A — B?]
Q. =[1—-D?>— A+ B??+4D*1- A) (23)

(22)
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it is found thatg = g(«) converges to a value 1 and one obtains

D1-aA
q(@) = R@) 5 (24)
BD
RO = ez =) (29)

The fact thaty (@) < 1 belowe,. can be understood as follows. For- 0 minimization of
the cost function (3), (4) is equivalent to that ®f;,_, (J - €"//N —d/c)?. Ford =0 and
p < N there is a whole set of properly normalizéds for which this sum takes its absolute
minimal value 0 and thereforg¢(a) < 1 for @ € [0, 1[. Whend # 0 the size of this set is
expected to be smaller, and a solutipfer) < 1 will appear in a smallet-interval.

In the remaining cases, i.e. > 0 whenc < 0 or @ > o, whenc > 0, one finds
thatg(a) — 1 for 8 — oo, and R(«) follows as the unique solution of the fourth-order
equation:

BD\?> F(R
a<A—BM-R> :T%% 0< R<Ro (26)
F(R):=1— AR?+ (D — BR)? (27)
BD
R B4 if0<BIz_DA<1 (28)
0-= -
1 otherwise .

4.2. Discussion

We now turn to the discussion of the results from the previous subsection. For illustrations
see figure 2. We first note th&(«) andgq(«) are non-decreasing functions @fand R («)
is even strictly increasing apart from specific casesxafomains with a constank («).
Further,q(«) and R(«) depend smoothly on with the exception ofx = «. whenc > 0,
where they are continuous but non-differentiable (see figur@s @), and ofa = 0 when
¢ < 0, whereg(a) jumps from 0 to 1 (see figures@( (d). A surprising phenomenon may
occur forc > 0 in the domaine < «. which, to the best of our knowledge, is observed
here for the first time:for B > D and sufficiently smal, equation (24) implies that the
overlap R(x) exceeds the self-overlaga)! (However,q () > R(«)? is still fulfilled.) An
example can be seen in figurebR( This somewhat counterintuitive phenomenon does not
seem to call for far reaching physical consequences. Rather it appears to be yet another
curiosity that may occur in a space of high dimensionaiy Though it has never been
noticed previously we expect it to also occur beyond the ‘Gaussian scenario’ considered
here.

For smalle the overlapR(«) starts off proportional tax whenc¢ > 0, cf (25), and
proportional to,/a whenc < 0. The explicit behaviour for < 0 is obtained from (26):

2n2

R(x) = a1+D2

+ O(@). (29)

The coefficients in these asymptotic expressions for ssnalle non-zero only foB D # 0
(Bd # 0 if ¢ =0). For BD = 0, including symmetric pattern distributions & 0) [3]
or symmetric potentialsd( = 0), but also in the limitsa — oo or ¢ — £oo, retarded
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Figure 2. The overlapR(«) (full) and the self-overlag («) (broken) for unsupervised learning
of Gaussian patterns (1), (2) by minimization of the quadratic cost function (3),d{%Jypical
example withc > 0 (@ = b = 3, ¢ = d = 1) showing a characteristic singularity of the overlaps
ata.. (b) The same but withR(a) > g(a) for smalla (a =b =3,¢c=2,d = 1). (c) Typical
example withc < 0 (@ = b = 3, ¢ = —1, d = 3) exhibiting the characteristi¢/a-behaviour of
R(a) for smalla and the trivial self-overlag (o) = O(x). (d) The same but withR(«x) < 1
fora > 0o (a=b=3,c=-1,d =0.2). (¢) An example for retarded classification due to a
symmetric pattern distributiora(= 3,5 = 0, c = d = 1). (f) Retarded classification induced
by a symmetricad hocpotential ¢ =3,b=1,c=1,d = 0).
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Figure 2. (Continued.)

classification occurs (see figureeR((f)). One then finds for arbitrary that

o = [1+ D?]/[A — B??

(30)
(31)
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if ¢ # 0 andR(x) =0 if ¢ = 0. In particular, forc[A — B?] < 0 nothing at all can be
learned if eitherB — 0 or D — 0. Forc < 0, d = 0 (maximal variance learning) and
¢ > 0,d = 0 (corresponding to ‘minimal variance learning’) it is, in fact, rather obvious
that the symmetry-breaking orientatid® will be orthogonal to the direction with maximal
or minimal variance of the patterr{&”},’zzl if A — B? is positive or negative, respectively,
since the variance of the examples in tBedirection is just 1- [A — B?] and 1 in any
direction orthogonal taB. A similar phenomenon has been observed in [2]. Note also
that the retardation thresholg, in general, depends on the specific learning rule under
consideration, but is obviously bounded from below by the one corresponding to Bayes
learning (17). Finally, forB D = 0 one hasgy(¢) = O(x) for ¢ < 0, while forc > 0
the self-overlap exhibits the non-trivial behaviogée) = « D?/(1 — «) in the domain
a < a. = 1/(14+ D?), see figures 2, (f). In agreement with the general conjecture made
in [6], the retardation thresholdg is always larger or equal ta.. The spin-glass-type
phase withg(a) > 0 but R(e) = 0 has been termed ‘phase of confusion’ in [3] since the
hypotheses/ become oriented but not correlated with the ‘trug’

The largee asymptotics for the Hebb rule & 0) and for B D = 0 is obvious from
(20) and (30), respectively, whereas in any other case one finds that

1  F(Ry R} )
Ro — 7# if O<Ry<1
o (1— R3) B2D?

Rep=1,_ 41 FD if BD=B2—A (32)
a 2 B2 D? B

1 FQ)

o 2(A — B2+ BD)?
In particular, for 0< Ry < 1 the symmetry-breaking directiaB can never be perfectly
inferred even from infinitely many examples, cf figurel2(

otherwise .

4.3. Saturation of the Bayes limit

From equations (10), (16) and (20) one readily sees that the ovR(tapcorresponding to

the minimization of the cost function (3), (4) coincides with the Bayes rdglx) for any
pattern distribution (1) wittu = O provided one chooses= 0 (Hebb rule). As pointed out

in section 4.1, the particular value 8f> 0 does not matter and one can take, for instance,
d = b. In other words, fou = 0 the overlapRy («) for the maximuma posteriorilearning

rule (minimization of the cost function (3) with' (1) = V*(1), cf section 2) reaches the
upper theoretical limit imposed by the Bayes algorithm. The same r&gult) = Rg(x)

is recovered also for symmetric pattern distributibns 0 by comparison of (17) and (30),
while for a andb both non-vanishing one can show th (@) < Rg(«) (except fora =0
andae — o0). In the latter case one might wonder whether one still can find a potential
V (x) different fromV*()) that reaches the Bayes limit. In the appendix C it is proved that
this is indeed possible, namely by choosing a quadratic potential (4) with parameter values
¢ andd that satisfy

= Re@ (33)
whereb > 0 andd > O is tacitly assumed as usual. For examples see figure 3. The
mismatch between this optimal choice of the potentigl) and the maximah posteriori
learning ruleV (1) = V*(1) can be understood [3] by the fact that, given a set of patterns
{5“}{1:1, the corresponding most probable hypothegidrom (9) may be quite different
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0.8
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(87

Figure 3. The overlapRg(«) for Bayes learning (full curve) according to (10) and (11) at
parameter values = b = 3 in (a) anda — oo with b/a = 1 fixed in ¢). The broken curves
are the overlapsR(«) corresponding to minimizing the quadratic cost function (3), (4) with
parameter values = 0, d = 1 (Hebb rule, touchingRg(«) for small @), 2¢c = d = 1 and

¢ = d = 1 (maximala posteriori probability rule, touchingRg(x) for large ). The dotted
curves represent examples£ 4, d = 1 andc = —1, d = 1) which never touchkg(«) for
finite or.

from a suitably defined ‘typical’ one. Exceptions are= 0 or b = 0, as already seen, as
well as asymptotically large (according to (33) withRg(oco) = 1) or a — oo with b/a
fixed anda > 1, see equation (18) and figurebR( In the latter case, where all patterns
lie on a cone abouB, the choiced/c = b/a leads to a perfect guess f& afterp = N
patterns have been seen, while any other choicg/efyields R(«x) < 1 for all ¢ < oo.

In conclusion, we see that a potential saturating the Bayes limit can always be found but
that this optimal choice typically depends anand the details of the pattern distribution.
Exceptions are asymptotically smaill for which the Hebb rule is always optimal. We
finally note that according to (33), for given non-vanishing values ahdb the function
Rg(w) is recovered as the envelope of all the learning cuRés) generated by different
choices ofc andd. However, only those with & d < bc/a andc of the same sign as
a actually touchRg (), see figure 3. Although for > 0 all theseR(«) curves start off
proportional tox, the envelopeRg(«) increases like/a. These features are reminiscent of
those reported in [12].
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5. Outlook

We studied unsupervised learning from examples governed by a distribution (1) with a
single symmetry-breaking orientatid8 by means of replica methods. Our results include
the performance of hypothesdsfor this unknown directionB based on Bayes, Gibbs and
maximal a posteriori learning algorithms as well as the minimization of a cost function
(3) with quadraticad hoc potentials (4). By restricting ourselves to Gaussian pattern
distributions (2), a complete analytical solution of the problem was possible. In particular,
we were able to determine the relevaglbbal extremum of the replica-symmetric free
energy (6) and to verify the local stability condition (8) analytically in all cases.

In spite of its simplicity, our ‘Gaussian scenario’ exhibits most of the features observed
previously for more complicated pattern distributions as well as various novel phenomena.
We only mention here the effect of retarded classification connected with a first- or second-
order transition in the overlaR(«), the saturation of the Bayes limit kad hocpotentials,
the possibility of perfect learning fax < oo and of imperfect learning even in the limit
a — oo. In fact, the general results obtained in [13] indicate that our ‘Gaussian scenario’ is
indeed representative in practically all respects, at least for smooth pattern distributions (1).
For instance, one can always find ath hocpotential saturating the Bayes limit. Typically,
it depends o, coinciding with the Hebb rule for asymptotically smalland with the
most probablea posteriorilearning strategy for asymptotically large Also our finding
that a symmetric pattern distribution or a symmetric potential imply retarded classification
carries over unchanged to the general case.

The saturation of the Bayes limit by usiagl hocpotentials is not only of principal but
also of practical interest since the implementation of the Bayes algorithm itself is numerically
extremely expensive. Therefore some remarks regarding the numerical minimization of the
quadratic cost function (3), (4) with side conditioff = N may be in place. For a linear
potential ¢ = 0) this minimization becomes equivalent to Hebbian learning and is thus
trivial to implement. The casé = 0 andc < O corresponds to maximal variance learning
and can be efficiently realized, e.g. by Oja’s rule [14]. Eog 0 andc > 0 one can show
that the cost function has a unique minimum onahsphere (at least beyond the retardation
thresholdwyg, cf section 4.2, and apart from the trivial symmetfy— —J) which thus can
be found by gradient descent or similar more efficient procedures [14]. Ifbatidd are
non-zero we cannot exclude local minima of the cost function and algorithms which might
get stuck in one of them should not be used. In order to reach the Bayes limit we propose
the following novel learning algorithm: one starts with Hebbian learning of a few examples.
Then J is updated sequentially in two steps by adding one or a few new examples each
time: in a first step the cost function is minimized with respect to the slightly enlarged set
of examples without changing the potentla{r). Since, as we demonstrated in this paper,
the assumption of replica symmetry seems to be valid, the cavity concepts (see [9] and
further references therein) strongly suggest that the minimiZirapanges little and can be
updated, e.g. by gradient descent. In a second step, the potential is adapted to the slightly
increasedr-value according to (33). Again, one expects that in this way the minimiZing
changes only a little and can be updated by standard methods. We verified this procedure
by extensive numerical simulations as discussed in more detail in appendix D. From the
results shown in figure 4 we conclude that our algorithm indeed approaches the Bayes limit
for asymptotically largeVv. We finally mention that the most probaldeposteriorilearning
rule for largea, where it reaches the Bayes limit, can also be implemented very efficiently
by a suitably tailored on-line algorithm [13].

Throughout our investigation we assumed to kn&(i) from (2) and it turned out
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Figure 4. The numerical overlag («) (circles) obtained by the iterative gradient descent-type
algorithm on the optimahd hoc potential proposed in section 5 (see also appendix D) for
N =100,a = b = 3. The full curve is the theoretical Bayes linfg («) from (10), (11). The
inset exemplifies the extrapolatioi — oo (from data forN = 25, 50, 75, 100) for = 0.5.
The theoretical Bayes limit is indicated by the arroRs(« = 0.5) = 0.524).

that this knowledge is crucial to find a good hypothegior the unknown ‘true’B. We

will show elsewhere how an unknow¥i*(A) can be determineéxactly from the same
training set{gl‘}l’::1 in the thermodynamic limitv. — oo with « = p/N > 0 fixed. This
underscores the relevance of the present results in a more general context.
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Appendix A. Derivation of (11)

One can conclude from (6) that
dG@=R.R) af , A%R 1 R
dR 2 1-AR| 21-R’
Since this derivative (Al) is smooth for® R < 1, non-negative foR — 0 and approaches
—oo for R — 1, we can focus on the determination of its zeros in the interval][@
order to find the maximizingk = Rg(«). The unique such zero is given by (11). This

solution is also consistent with the tacit restriction t¢ &x > 0 in (6) (see also the second
footnote in section 2) due tax = a(1—¢) > —1.

(A1)
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Appendix B. Derivation of (22)—(26)

By closer inspection one can see that an extremum of (6) as specified in the second footnote
of section 2 exists, is generically unique and satisfi€sq, R)/dqg =0, dG(q, R)/dIR =0
for any fixed O< 8 < oo.

We now consider separately the cases where the extremiziagqg(«) in (6) stays
below 1 or converges to 1 fop — oo. In the former casej(«) < 1 we can restrict
ourselves ta > 0 sincec < 0 is incompatible with the side conditioncx > 0. Then,
equation (6) can be rewritten (up to an irrelevant additive constant) in the form

- 1-R2—a F(R)

3 In(1—¢q) + 20— (B1)
where F(R) is defined in (27). From the extremization conditidG (¢, R)/0R = 0 one
recovers (25), whild G (g, R)/dg = 0 yields (24). The side conditiortcx > 0O is trivially
fulfilled, whereas both the minimization condition with respeciyt®2G(q, R)/dg? > 0,
and the stability condition (8) are fulfilled if and only éf < 1. Settingg(e) = 1 in (24)
and eliminatingR(«) by means of (25) one obtains a quadratic equationefavith the
unique solution (22) in the admitted domain0x < 1.

Next we address the case thgtx) — 1 for 8 — oco. Since the minima of the cost
function (3), (4) are of quadratic order,= 8 (1 — ¢) is the sensitive quantity in this limit
[9] and the extremization ofi (¢, R) from (6) becomes equivalent to the extremization of

1-R?> « cF(R)
2x 21+cx’

G(g.R) =

G(x,R) = (B2)
We recall that we have to minimiz&(x, R) with respect tor € [0, co) and then to maximize
with respect toR € [—1, 1]. Further, let us restrict ourselves for the moment te 0. For
any fixedR € [—1, 1] the corresponding minimizing = x(R) is then readily obtained:

x(R) = V1— R?/[ch(R)] (B3)

h(R) = Ja F(R) —v/1— R? (B4)
and we are left with the maximization of

G(x(R),R) = —ch(R)?/2 (B5)

providedh(R) > O for all R € [—1, 1]. In the opposite casé(R) < O for at least one
R € [-1, 1], our initial assumption that the extremizing= x(«) is finite breaks down,
indicating that actually; (@) stays below 1 foB — co. SinceA < 1 it follows that F(R)
from (27) is positive for—1 < R < 1. Consequently, there must exist a critiealvalue
@. above which the conditioh(R) > O for all R € [—1, 1] is satisfied and below which it
is violated. As one expects, it will turn out that this agrees withe, from (22). In the
following we will determine the valuk = R(«x) that maximizesG (x(R), R) from (B5)
and thus minimize&(R) from (B4) providede > @.. We thus know that with decreasing
o, h(R(a)) vanishes for the first time at = @.. Since additionallyz(R(«)) < 0 for all

o < d., the value ofa, is uniquely fixed through

h(R(&)) = O. (B6)

Exploiting the fact thatk(R) > 0 for @ > «. we can infer that the side conditiontlcx > 0
is always fulfilled byx(R) from (B3).

We now turn to the minimization df(R) from (B4). One readily sees that the minimum
R = R(x) cannot be aR = 1 nor in the domain-1 < R < 0 due to the term/1 — R? in
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(B4) andB > 0, D > 0in (27), respectively (for simplicity, the casBs= 0 andD = 0 are
treated here as limits of small positig and D, see also [6]). We can thus concentrate on
solutions of#’(R) = 0 in the region O< R < 1. Differentiating (B4), this implies thaR («)
must be a solution of (26) (in particular,Q R(«) < Ry must be satisfied). By means of a
straightforward but somewhat tedious discussion of this fourth-order equation (26) one can
show that a solution exists and is unique in the prescribed intery@]0for any «. This
unique solution of (26) can thus be identified wili{er) provided« is above the critical
valuea,. At this critical value,R = R(a.) satisfies both (B6) and (26) and after eliminating
R one recovers that. indeed coincides witlx. from (22).

Forc < 0 one can show by a similar line of reasoning that) = 1 andR(«) following
from (26) is a solution of the extremization problem plus side conditienck > 0, but
now for arbitrarya > 0. By closer inspection one finally finds that these solutions with
g(a) — 1 for B — oo for bothc > 0 andc < 0 satisfy the stability condition (8).

In conclusion, we identified for all possible parameter- angalues the relevant global
solution of the extremization problem (6) plus side conditios &x > 0 and we verified
the stability condition (8) in all cases.

Appendix C. Derivation of (33)

We want to show that for given values of b, anda we recoverR(a) = Rg(x) if we
choosec andd according to (33). To this end it is sufficient to verify that withand d

from (33) andR = Rg(«) equation (26) is solved (due to the uniqueness of such a solution
found in appendix B) and, in the case that- 0, additionally.(R), defined in (B4), is
non-negative forR = Rg(x), guaranteeing that > «.. Introducing (33) andR = Rg(«)

into the definition (27) one obtains

AF(R)=1—AR>h(R) (C1)
h(R):= A— B>+ BD/R. (C2)

Exploiting~(C1) and the fact that (A1) is zero B («) = Rg(a)? one finds thaR = Rg(«)
satisfiese 1(R)%(1 — R?) = F(R) and that

1-AR?2 |>1 fora >0

hR)y= —_ """
hB)="2a"R) <0  fora<o.

(C3)

From equations (C3), (C2) and (28) one can infer tRak Ry. SinceR > 0 is trivially
true for our choiceR = Rg () the verification of (26) is completed. We are left to prove
h(R) > 0 in the case that > 0. This is readily achieved by introducing (26) into the
definition (B4) and then making use of the inequality (C3).

Appendix D. Simulations

To verify whether the Bayes limit can indeed be reached by means of the algorithm proposed
in section 5 we performed extensive numerical simulations. Patterns were generated
according to the distribution (1), (2) by drawing the first component from a Gaussian
distribution with mean value: = b/(1 + a) and standard deviation? = 1/(1 + a), while

the remainingV — 1 components were taken to be normally distributed random variables.
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Since for asymptotically smalk the Hebb perceptron reaches the Bayes limit (cf the
end of section 4.3) we used the Hebb rule as a starting point for the simulations:

1A
J=2%"¢" (D1)
P4

with «; ~ 0.05. The additionalp — oy N patterns were added one by one to the data set.
At each step, the correspondidgvector was updated by minimization of the cost function
E(J):

)4
EWJ)=) V(" -J/VN)+yJ* =Ny (D2)

n=1

where the potential/ (1) is fixed through (4), (10), (11), (33) and the last term is added

to ensure proper normalization df (y being typically equal to 10). Minimization with
respect to this cost function was performed by means of the Fletcher—-Reeves—Polak—Ribiere
algorithm which is essentially a conjugate gradient-descent method. For each value of
we then calculated the overlap of the generated hypothEsisth the ‘true’ preferential
direction B. The resulting curve fov = 100 is shown in figure 4. The overlap has been
averaged over 400 independent random sets of patterns. The small deviations from the
theoretical Bayes limit (less than 2% far> 0.2) can be attributed to finite-size effects as

is illustrated in the inset of figure 4.
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